

Interactive Electronic Flight Strips

Nathan A. Doble

R. John Hansman

JUP Quarterly Review

April 4, 2002

Motivation

- Controller interface needed for MIT departure planner
- System architecture and design driven by requirements analysis
 - ☐ Functional (controller input-output)
 - □ Human factors

DP Interface Functional Requirements

 Contro 	ller	Input
----------------------------	------	-------

- ☐ Aircraft "ready to push" time
- ☐ Aircraft push time
- ☐ Aircraft taxi start time
- ☐ Aircraft takeoff time
- ☐ Aircraft gate location
- ☐ Current runway configuration
- □ Downstream constraints

Controller Output

- ☐ Suggested runway configuration changes (configuration manager)
- ☐ Pushback queue and initial runway assignments (gate manager)
- ☐ Virtual runway queue and takeoff times (virtual queue and mix managers)
- All other DP input from static databases (e.g., airport layout) or other sources (e.g., weather forecasts, airline schedules)

DP Interface Human Factors Requirements

- Head-up operation
- Mobility within tower cab

Observations

•	Some DP inputs already written on paper flight strips "Ready to push" time Actual push time Takeoff time
•	Some aircraft-specific DP inputs would be easy to add to a flight strip Taxi start time Gate location
•	Other DP inputs and outputs better suited to centralized interface Current runway configuration Suggested runway configuration changes Downstream restrictions Runway, Taxi, and Push queues

System Architecture Conclusions

- To satisfy all interface functional requirements
 - ☐ Electronic flight strip system
 - ☐ Central management interface
- To satisfy human factors requirements of tower environment
 - ☐ An electronic analogue of the individual paper flight progress strip, not just an electronic analogue of the strip rack
- Solution: PDA-based electronic flight strips communicating over wireless LAN with desktop-based central management interface

System Architecture

Design Considerations

•	Electronic flight strip must preserve functionality present in current paper departure flight strips (source: BOS Tower SOP)	
	 □ Changing aircraft type, altitude, route, etc. □ Recording initial heading □ Recording ready to push and departure times □ Recording in-trail restrictions □ Recording nonstandard taxi paths □ Indicating wake turbulence waiver □ Indicating ATIS received by aircraft □ Indicating position and hold clearance issued □ Writing any other nonstandard instructions 	
•	Other aspects of paper flight strips and strip rack that should preserved	
	 □ Natural input method (handwriting) □ Handoffs completed by physically transferring strip from controller to controller □ Ability to sort flights in strip rack 	

Design Considerations (2)

- Although not required by DP or current flight strip procedures, electronic interface would allow additional features
 - ☐ Customized views for each controller position
 - ☐ Airport surface map
 - Aircraft positions
 - Taxi clearances
 - Runway assignments
 - □ Runway incursion alerting
 - ☐ Weather information
 - ☐ Performance metrics
 - ☐ Trial planning for virtual runway queue

Management Interface: General Layout

Menu Buttons				
Runway Queue Timelines		Forecasted Arr/Dep Load Graphs		
Taxi Clearance Timeline	Push Timeline	Airport Surface Map		

Management Interface

Flight Strip: General Layout

Flight Strip: Clearance Delivery

Flight Strip: Push / Ramp Control

Flight Strip: Ground Control

Flight Strip: Local Control

Issues

- Absolute vs. differential time
- Color conventions
 - ☐ If runway incursion information included, possible conflicts between standard aviation display color coding and paper flight strip coloring, timeline color-coding
- Flight strip position determination
 - ☐ In order to perform automated handoffs or automated sorting with the strip rack, some position information must be known
 - ☐ Instrumenting the strip vs. instrumenting the strip rack
 - Prigge & How: Dipole magnetic fields to track (x,y,z) position of flight strip, centimeter accuracy shown
 - Mackay: Resistors on flight strips to determine position on strip rack

Current Progress

- PDA and wireless LAN hardware purchased
- Test application running on PDAs
 - ☐ Runs full-screen
 - ☐ Basic line drawing and text printing (portrait only) functions
 - ☐ Accepts stylus input
 - ☐ Controls hardware buttons
 - □ Sends and receives messages via wireless LAN
 - ☐ Handwriting recognition not yet enabled

Future Work

- Finish coding initial design of flight strips and management interface
- Solicit input on interface from Boston Logan controllers
- Revise design based on controller input
- Evaluate controller performance with electronic flight strips